4(a) Apply the method of variation of parameters to solve
\[\frac{d^2y}{dx^2} + 4y = \tan 2x \] (10)

(b) Solve \[x^2 \frac{d^2y}{dx^2} - 3x \frac{dy}{dx} + 5y = x^2 \sin (\log x) \] (10)

SECTION-B

5(a) Apply convolution theorem to evaluate: \[L^{-1}\left[\frac{s^2}{(s^2+4)^2} \right] \] (10)

(b) Find \[L^{-1}\left[\log \frac{s(s+1)}{s^2+4} \right] \] (10)

6(a) Evaluate \[\iint r^3 \, dr \, d\theta \] over the area included between the circles \[r = 2 \sin \theta , r = 4 \sin \theta . \] (10)

(b) Change into polar co-ordinate and evaluate \[\int_0^\infty \int_0^\infty e^{-(x^2+y^2)} \, dy \, dx . \] (10)

7(a) Find the area enclosed by the ellipse \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 . \] (10)

(b) Find by double integration, the area lying inside the circle \(r = a \sin \theta \) and outside the cardioid (10)