Q.7 a) Find $f(0)$ and $f(\infty)$ using initial and final value theorem for the function given below:

$$F(s) = \frac{s^2 + 7s^3 + 5}{s(s^3 + 3s^3 + 4s^2 + 2)}$$

(8)

(b) Find the response of the system whose system function

$$H(s) = \frac{Y(s)}{X(s)} = \frac{1}{s+1}$$

(i) $X(t) = d(t)$ (i.e. Impulse Function)

(ii) $X(t) = e^{-2t}$

(b) Find I_1, I_2 and V in the circuit shown in figure:-

(12)
Q.3 (a) At what value of V_A, Power delivered from Source to Load is max.

\[
\text{Diagram:}
\]

(b) State Millman’s Theorem. Find the Current I using Millman’s Theorem.

\[
\text{Diagram:}
\]

Q.4 (a) Define TREE of a connected graph. State its properties. State at least 4 different trees of the following graph. (8)

\[
\text{Diagram:}
\]

(b) Define the following:-

i) Node
ii) Link,
iii) Twig,
iv) Co-Tree,
v) Cutset,
vi) Loop

SECTION - B

Q.5 (a) In the network shown, K is changed from position a to b at $t=0$. Solve for I, $\frac{di}{dt}$, $\frac{d^2i}{dt^2}$ at $t=0+$, if $R= 1000\Omega$, $L= 1H$, $C= 0.1\mu F$ and $V=100$ V. Assume that the Capacitor is initially uncharged

\[
\text{Diagram:}
\]

(b) In the circuit given below, at time t_0 after the switch was closed, it was found that $v_2=+5v$. We are required to determine the values of $i_2(t_0)$ and $\frac{di_2}{dt}$

\[
\text{Diagram:}
\]

Q.6 (a) Obtain the y-parameter of the circuit shown in the fig. below. Also draw its equivalent circuit using y-parameter and comment on reciprocity and symmetry of the circuit. (10)

\[
\text{Diagram:}
\]

(b) Obtain the z and y parameters of the network shown below:-

\[
\text{Diagram:}
\]